Package: HETOP 0.2-6

J.R. Lockwood

HETOP: MLE and Bayesian Estimation of Heteroskedastic Ordered Probit (HETOP) Model

Provides functions for maximum likelihood and Bayesian estimation of the Heteroskedastic Ordered Probit (HETOP) model, using methods described in Lockwood, Castellano and Shear (2018) <doi:10.3102/1076998618795124> and Reardon, Shear, Castellano and Ho (2017) <doi:10.3102/1076998616666279>. It also provides a general function to compute the triple-goal estimators of Shen and Louis (1998) <doi:10.1111/1467-9868.00135>.

Authors:J.R. Lockwood

HETOP_0.2-6.tar.gz
HETOP_0.2-6.zip(r-4.5)HETOP_0.2-6.zip(r-4.4)HETOP_0.2-6.zip(r-4.3)
HETOP_0.2-6.tgz(r-4.4-any)HETOP_0.2-6.tgz(r-4.3-any)
HETOP_0.2-6.tar.gz(r-4.5-noble)HETOP_0.2-6.tar.gz(r-4.4-noble)
HETOP_0.2-6.tgz(r-4.4-emscripten)HETOP_0.2-6.tgz(r-4.3-emscripten)
HETOP.pdf |HETOP.html
HETOP/json (API)

# Install 'HETOP' in R:
install.packages('HETOP', repos = c('https://jrlockwood.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/jrlockwood/hetop/issues

Uses libs:
  • jags– Just Another Gibbs Sampler for Bayesian MCMC
  • c++– GNU Standard C++ Library v3

On CRAN:

2.00 score 1 stars 146 downloads 5 exports 15 dependencies

Last updated 3 years agofrom:be2121f92b. Checks:OK: 5 NOTE: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 08 2024
R-4.5-winNOTENov 08 2024
R-4.5-linuxNOTENov 08 2024
R-4.4-winOKNov 08 2024
R-4.4-macOKNov 08 2024
R-4.3-winOKNov 08 2024
R-4.3-macOKNov 08 2024

Exports:fh_hetopgendata_hetopmle_hetoptriple_goalwaic_hetop

Dependencies:abindbootclicodagluelatticelifecyclemagrittrR2jagsR2WinBUGSrjagsrlangstringistringrvctrs